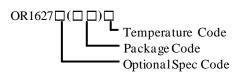
OR1627KQKC

High Efficiency 5.5V, 6A, 2.4MHz I²C Programmable, Synchronous Step Down Regulator

General Description


OR1627K is a high efficiency 2.4MHz synchronous stepdown DC/DC regulator IC capable of

delivering up

to 6A output currents. It can operate over a wide input voltage range from 2.6V to 5.5V and integrate main switch and synchronous switch with very low $R_{DS (ON)}$ to minimize the conduction loss. The output voltage can be programmed from 0.7125V to 1.5V through I²C interface.

OR1627K is in a space saving, low profile CSP1.56x1 .96-20 package.

Ordering Information

Ordering Number	Package Type	Note
OR1627KQKC	CSP1.56x1.96-20	0x41H

VIN

VSEL

ΕN

Features

- Input voltage range: 2.6V to 5.5V
- 2.4 MHz switching frequency minimizes the external components
- Typical 75uA quiescent current
- Low $R_{DS(ON)}$ for internal switches (PFET/NFET): $28m\Omega/17m\Omega$
- Programmable Output Voltage: 0.7125V to 1.5V in 12.5mV steps
- 6A continuous output current capability
- Capable for 0.25uH inductor and 22uF Ceramic Capacitor
- Hic-cup mode protection for hard short condition
- RoHS Compliant and Halogen Free
- Compact package: CSP1.56x1.96-20

Applications

- Smart-phone
- Web-tablets

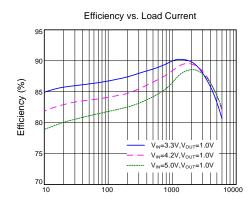
VOUT

COUT

22uF/6.3V

Typical Applications

K


 K_2

R

1MΩ

V_{IN}:2.6~5.5V

C_{IN} 22uF/6.3V

Load Current (mA)

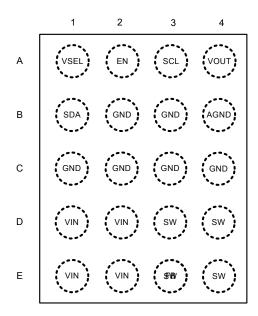
Figure 1. Schematic Diagram

Figure2. Efficiency

L₁:0.25uH

 \mathcal{M}

LX


VOUT

SCL

SDA

GND AGND

Pinout (top view)

Part Number	Package type	Top Mark [©]		
OR1627KQKC	CSP1.56x1.96-20	Psxyz		
Note () y-year and y-weak and z-lat number and				

Note ①: *x*=*year code*, *y*=*week code*, *z*= *lot number code*.

Pin	Pin Name	Pin Description		
D1,D2,E1,E2	VIN	Power input pin. These pins must be decoupled to ground with at least		
		22uF ceramic capacitor. The input capacitor should be placed as close as possible between VIN and GND pins.		
D3,D4,E3,E4	SW	Switching node pin. Connect these pins to the switching node of inductor.		
B2,B3,C1,C2,C3,C4	GND	Power ground pins.		
A1	VSEL	Voltage select pin. When this pin is low, V_{OUT} is set by the VSEL0 register.		
		When this pin is high, V _{OUT} is set by the VSEL1 register.		
A2	EN	Enable control pin. Active high. Do not leave it floating.		
B1	SDA	I ² C interface Bi-directional Data line.		
B4	AGND	Analog ground pin.		
A3	SCL	I ² C interface clock line.		
A4	VOUT	Sense pin for output. Connect to the output capacitor side.		

.

Absolute Maximum Ratings (Note 1)

VIN	6.0V
All Other Pins	$V_{IN} + 0.6V$
Power Dissipation, PD @ TA = 25 °C CSP1.56x1.96-20	2.6W
Package Thermal Resistance (Note 2)	
θ _{JA}	38 °C/W
θ _{JC}	
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	260 °C
Storage Temperature Range	65 ℃ to 150 ℃

Recommended Operating Conditions (Note 3)

Supply Input Voltage	2.6V to 5.5V
Junction Temperature Range	
Ambient Temperature Range	40 ℃ to 85 ℃

Electrical Characteristics

(VIN = 5V, VOUT = 1.0V, L = 0.25uH, COUT = 22uF, TA = 25 °C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		2.6		5.5	V
V _{IN} UVLO	V _{UVLO}	V _{IN} Rising		2.45	2.60	V
V _{IN} UVLO Hysteresis	V _{UVHYST}			150		mV
Quiescent Current	IQ	I _{OUT} =0, EN=1, FB=105%*V _{REF}		75		μΑ
Shutdown Current	I _{SHDN_H/W}	EN=0		0.1		
	I _{SHDN_S/W}	EN=V _{IN} , Buck_ENx=0		30		μA
EN, VSEL, SDA, SCL						
Rising threshold	V _{IH}		1.1			V
Falling threshold	V _{IL}				0.4	V
V _{OUT} Accuracy	V _{REG}	Forced PWM, V _{OUT} =VSEL0, default value	-1.5		+1.5	%
NFET R _{DS(ON)}	R _{DS(ON)N}			17		mΩ
PFET R _{DS(ON)}	R _{DS(ON)P}			28		mΩ
PMOS peak current limit	I _{LIM_PEAK}		7.5			Α
NMOS peak current limit	I _{LIM_VALLEY}		6			Α
Internal soft-start time	t _{SS}			300		us
Min on time				40		ns
Oscillator Frequency	Fosc			2.4		MHz
Thermal Shutdown Temperature	T_{SD}			150		C
Thermal Shutdown Hysteresis	T _{HYS}			15		C
LX node discharge resistor	R _{DSH}			150		Ω
Input OVP shutdown		Rising threshold		6.15		V
-	V _{OVP}	Falling threshold	5.5	5.85		V
Over voltage protection blanking time	T _{Blanking}			20		us

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ JA is measured in the natural convection at T_A = 25 °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3: The device is not guaranteed to function outside its operating conditions.

Enabling Function

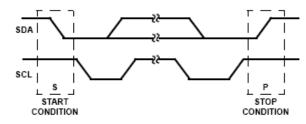
The EN pin controls OR1627KQKCstart up. EN pin low to high transition starts the power up sequence. If EN pin is low, the DC/DC converter will be turned off.

OR1627Kallows software to enable of the regulator when EN is HIGH, via the BUCK_EN bits. BUCK_EN0 and BUCK_EN1 are both initialized HIGH in the registers.

Р	ins	Bit	S	
EN	VSEL	BUCK_EN0	BUCK_EN1	OUTPUT
0	Х	Х	Х	OFF
1	0	0	Х	OFF
1	0	1	Х	ON
1	1	Х	0	OFF
1	1	Х	1	ON

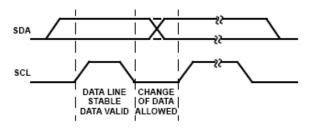
Hardware and Software Enable control table.

Input Over Voltage Protection Function


When the V_{IN} exceeds over voltage protection threshold, OR1627K will stop switching to protect the circuitry. An internal 20us blanking time helps to prevent the circuit from shutting down due to noise spikes.

I²C Interface

OR1627K features an I²C interface that allow the HOST processor to control the output voltage achieve the DVS function. The I²C interface supports clock speeds of up to 3.4MHz and uses standard I²C commands. OR1627K always operates as a slave device, and is addressed using a 7-bit slave address followed by an 8th bit, which indicates whether the transaction is a read-operation or a write-operation. I²C address of the OR1627K is set at the factory to 0x41h.

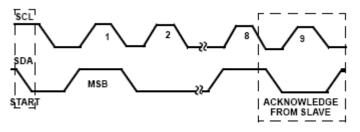

START and STOP Conditions:

OR1627Kis controlled via an I²C compatible interface. The START condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The STOP condition is a LOW to HIGH transition on the SDA line while SCL is HIGH. A STOP condition must be sent before each START condition. The I²C master always generates the START and STOP conditions.

Data Validity:

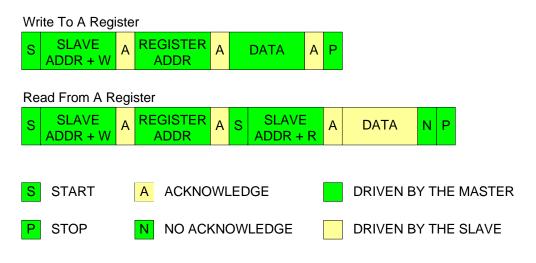
The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP condition. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

OR1627KQKC Rev. 0.1 ©2022. www.orangesemic-sg.com


5

Acknowledge:

Each address and data transmission uses 9-clock pulses. The ninth pulse is the acknowledge bit (ACK). After the


START condition, the master sends 7-slave address bits and an R/W bit during the next 8-clock pulses. During the ninth clock pulse, the device that recognizes its own address holds the data line low to acknowledge. The acknowledge bit is also used by both the master and the slave to acknowledge receipt of register addresses and data.

Data Transactions:

All transactions start with a control byte sent from the I^2C master device. The control byte begins with a START condition, followed by 7-bits of slave address (1000001x for the OR1627K, this address can be changed if

necessary) followed by the 8th bit, R/W bit. The R/W bit is 0 for a write or 1 for a read. If any slave devices on the I²C bus recognize their address, they will acknowledge by pulling the SDA line low for the last clock cycle in the control byte. If no slaves exist at that address or are not ready to communicate, the data line will be 1, indicating a Not Acknowledge condition. Once the control byte is sent, and OR1627Kacknowledges it, the 2nd byte sent by the master must be a register address byte. The register address byte tells the O R 1 6 2 7 K which register the master will write or read. Once the OR1627Kreceives a register address byte it responds with an acknowledge.

Register Settings:

1. VSEL0 (0x00)

Register Name				VSEL0
Address				0x00
Field	Bit	R/W	Default	Description
BUCK_EN0	7	R/W	1	Software buck enable. When EN pin is low, the regulator is off. When EN pin is high, BUCK_EN bit takes precedent.
MODE0	6	R/W	0	0=Allow auto-PFM mode during light load. 1=Forced PWM mode
NSEL0	5:0	R/W	010111 (V _{OUT} =1.0V)	000000 = 0.7125V 000001 = 0.7250V 000010 = 0.7375V 010111 = 1.0000V 111111 =1.5000V

2. VSEL1 (0x01)

Register Name				VSEL1
Address				0x01
Field	Bit	R/W	Default	Description
				Software buck enable. When EN pin is low, the
BUCK_EN1	7	R/W	1	regulator is off. When EN pin is high, BUCK_EN bit
				takes precedent.
MODE1	6	R/W	0	0=Allow auto-PFM mode during light load.
				1=Forced PWM mode
NSEL1	5:0	R/W	010111 (V _{OUT} =1.0V)	000000 = 0.7125V
				000001 = 0.7250V
				000010 = 0.7375V
				010111 = 1.0000V
				111111 =1.5000V

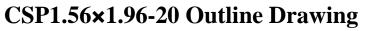
3. Control Register (0x02)

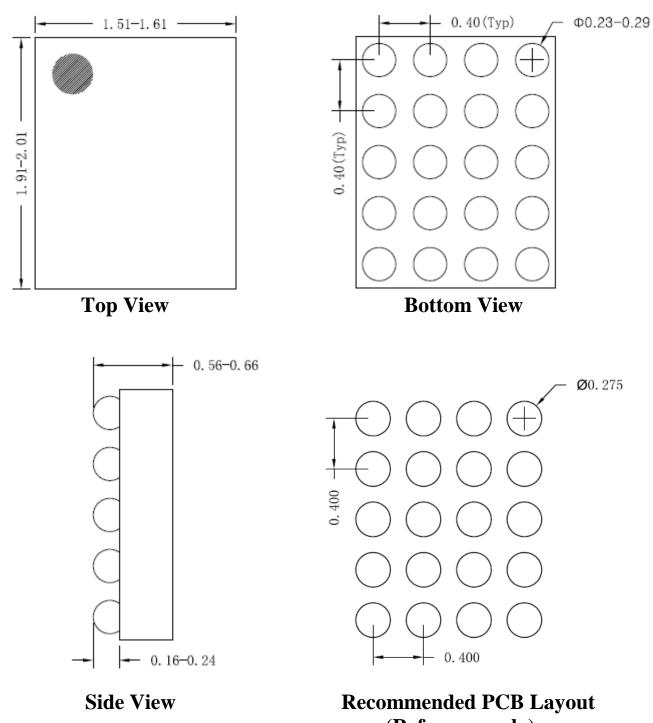
Register Name				Control Register
Address				0x02
Field	Bit	R/W	Default	Description
Output Discharge	7	R/W	1	0 = discharge resistor is disabled. 1 = discharge resistor is enabled.
Slew Rate	6:4	R/W	000=12.5mV/0.15us	Set the slew rate for positive voltage transitions. 000 = 12.5mV/0.15us 001 = 12.5mV/0.3us 010 = 12.5mV/0.6us 011 = 12.5mV/1.2us 100 = 12.5mV/2.4us 101 = 12.5mV/4.8us 110 = 12.5mV/9.6us 111 = 12.5mV/9.6us 111 = 12.5mV/9.6us
Reserved	3	R/W	0	Always reads back 0.
RESET	2	R/W	0	Setting to 1 resets all registers to default values.
Reserved	1:0	R/W	00	Always reads back 0.

4. ID1 Register (0x03)

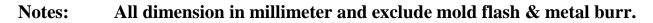
Register Name				ID1 Register
Address				0x03
Field	Bit	R/W	Default	Description
VENDOR	7:5	R	100	IC vendor Orange code.
Reserved	4	R	0	Always reads back 0.
DIE_ID	3:0	R	1000	IC option code

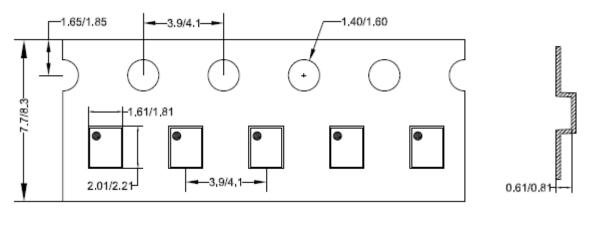
5. ID2 Register (0x04)

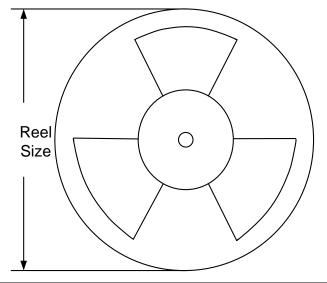

Register Name				ID2 Register
Address				0x04
Field	Bit	R/W	Default	Description
Reverved	7:4	R	0000	Always reads back 0.
DIE_REV	3:0	R	0001	IC mask revision code


6. PGOOD Register (0x05)

Register Name				PGOOD Register	
Address				0x05	
Field	Bit	R/W	Default	Description	
PGOOD	7	R	0	1: Buck is enabled and soft-start is completed.	
Reserved	6:0	R	000 0000	Always reads back 0.	


.


(Reference only)


Taping & Reel Specification

1. CSP1.56×1.96

Feeding direction ------

2. Carrier Tape & Reel specification for packages

Package	Tape width	Pocket	Reel size	Trailer *	Leader * length	Qty per reel
types	(mm)	pitch(mm)	(Inch)	length(mm)	(mm)	(pcs)
CSP1.56×1.96	8	4	7''	400	400	3000

3. Others: NA